English  
利来w66线上平台手机版app - 利来国际w66官方平台
姓名: 王福軍
性別:
英文名: Wang Fujun
人才稱號:
職稱: 副教授;碩士生導師;博士生導師
職務: null 專業: 機械制造及其自動化
所在機構: 機械工程系 個人主頁:
郵箱: wangfujun@tju.edu.cn 辦公地點: 天大機械工程學院37樓
傳真: 辦公電話:
主要學歷: 2007.03 - 2010.03,天津大學,機械制造及其自動化專業,工學博士
2005.09 - 2007.03,天津大學,機械制造及其自動化專業,工學碩士

主要學術經歷: 2010.10 - 至今, 天津大學機械工程學院機械工程系,講師,副教授
2014.01 - 至今, 天津大學機械工程學院機械工程系,碩士生導師
2011.02 - 2011.02,香港科技大學,交流訪問
2013.12 - 2014.12,美國伊利諾伊大學香檳校區(UIUC),訪問學者

主要研究方向: 微操作機器人;
柔性驅動器與機器人;
柔性機構系統;
機電系統動力學與控制;
精密定位與操作
精密制造裝備與工藝;


主要講授課程: 《微納米機器人基礎與技術》;
《工程圖學基礎3》;
《工程圖學1B》;
《CAD/CAM實習》

主要學術兼職: 天津市自動化技術應用研究會會員;
國際期刊 IEEE/ASME Transactions on Mechatronics, International Journal of Fatigue,Mechatronics,International Journal of Advanced Manufacturing Technology,Applied Surface Science,Physica B,Recent Patents on Mechanical Engineering評審人;
國家自然科學基金面上項目評審人。

主要學術成就: 主持/參加國際合作、國家和省部級課題10余項,發表論文50余篇,其中SCI檢索40余篇。
2012 入選首批天津大學北洋學者青年骨干教師計劃
2013 獲天津市/天津大學優秀博士學位論文
2015 獲天津大學本科畢業設計優秀指導教師

主要科研項目: [1]國家自然科學基金面上項目, 柔性器件主動可控超聲微轉印關鍵基礎問題研究, 2017/01-2020.12, 主持。
[2]國家自然科學基金面上項目, 超聲輔助納米加工系統及其關鍵技術研究, 2017/01-2020.12, 參與。
[3]歐盟2020地平線項目,面向單細胞操作的微納操作機器人,2017.01-2020.12,天津大學部分負責人。
[4]廣東省精密裝備與制造技術重點實驗室課題,面向激光微細加工的高效精密定位系統設計與控制,2016.01-2017.12,主持。
[5]特種車輛及其傳動系統智能制造國家重點實驗室課題,主動輪齒圈激光涂覆基礎科學與關鍵技術研究,2016.03-2017.12,主持。
[6]高檔數控機床與基礎制造裝備國家科技重大專項課題,數控機床誤差測量、分析與補償技術,2015.01-2017.12,參與。
[7]國家自然科學基金項目, 基于柔性聚合物薄膜的微結構/器件超聲壓焊技術研究, 2015/01-2017/12, 參加。
[8]國家自然科學基金項目, 音圈電機直驅的柔性解耦定位系統動力學特性與控制方法”,2013/01-2015/12, 主持。
[9]天津市自然科學基金青年項目, 射頻識別芯片熱超聲鍵合質量監測相關基礎問題研究, 2013/01-2016/12, 主持。
[10]國家自然科學基金項目, 三維可控探針納米加工系統及其關鍵技術研究, 2013/01-2016/12, 參加。
[11]歐盟第七框架項目,生物醫療機器人及其應用,2014.01—2017.12,參與。
[12]863計劃重大項目, 箱體類精密工作母機共性前沿技術平臺, 2012/01-2015/12, 參加。
[13]國家自然科學基金青年基金項目, 牙科陶瓷材料旋轉超聲加工關鍵技術研究, 2012/01-2014/12, 參加。
[14]天津大學“北洋學者”青年骨干教師計劃項目, 高速精密定位系統動態設計與控制, 2012/06-2014/06, 主持。
[15]天津市科技支撐計劃重點項目, 高速精密IC芯片鍵合機設計理論與樣機建造, 2010/04-2013/03, 參加。
[16]天津市應用基礎研究計劃項目, 一類新型激振系統的動態設計理論與關鍵技術, 2006/01-2009/12, 參加。

代表性論著: SCI檢索期刊論文:
[1] Wang F J*, Liang C M, Tian Y L, Zhao X Y, and Zhang D W. Design and control of a compliant microgripper with a large amplification ratio for high-speed micro manipulation, IEEE/ASME Transactions on Mechatronics, 2016, 21(3): 1262-1271.
[2] Wang F J*, Zhang H J, Liang C M, Tian Y L, Zhao X Y, and Zhang D W. Design of high frequency ultrasonic transducers with flexure decoupling flanges for thermosonic bonding, IEEE Transactions on Industrial Electronics, 2016,63(4): 2304-2312.
[3] Wang F J*, Liang C M, Tian Y L, Zhao X Y, and Zhang D W. A flexure-based kinematically decoupled micropositioning stage with a centimeter range dedicated to micro/nano manufacturing, IEEE/ASME Transactions on Mechatronics, 2016, 21(2): 1055-1022.
[4] Zhang H J, Wang F J*, Zhang D W, Wang L J, Hou Y Y, and Xi T. A new automatic resonance frequency tracking method for piezoelectric ultrasonic transducers used in thermosonic bonding, Sensors and Actuators: A-Physical, 2015, 235: 140-150.
[5] Wang F J, Ma, Z P, Gao W G*, Zhao X Y, Tian Y L, Zhang D W, and Liang C M. Dynamic modeling and control of a novel XY positioning stage for semiconductor packaging, Transactions of the Institute of Measurement and Control, 2015, 37(2): 177-189.
[6] Liang C M, Wang F J*, Tian Y L, Zhao X Y, Zhang H J, Cui L Y, Zhang D W, and Ferreira P. A novel monolithic piezoelectric actuated flexure-mechanism based wire clamp for microelectronic device packaging, Review of Scientific Instruments, 2015, 86: 045106.1-10.
[7] Wang F J*, Liang C M, Tian Y L, Zhao X Y, and Zhang D W. Design of a piezoelectric- actuated microgripper with a three-stage flexure-based amplification, IEEE/ASME Transactions on Mechatronics, 2015, 20(5): 2205-2213.
[8] Zhang H J*, Wang F J, Xi T, Zhao J, Wang L J, and Gao W G. A novel quality evaluation method of resistance spot welding based on the electrode displacement signal and Chernoff faces technique, Mechanical Systems and Signal Processing, 2015, 62: 431-443.
[9] Guo Z Y, Tian Y L*, Liu C F, Wang F J, Liu X P, and Zhang D W. Design and control methodology of a 3-DOF flexure-based mechanism for micro/nano positioning, Robotics and Computer Integrated Manufacturing, 2015, 32: 93-105.
[10] Tian Y L*, Liu C F, Liu X P, Wang F J, Li X C, Qin Y D, Zhang D W, and Shirinzadeh B. Design, modeling and characterization of a 2-DOF precision positioning platform, Transactions of the Institute of Measurement and Control, 2015, 37(3): 396-405.
[11] Wang F J*, Li J L, Liu S W, Zhao X Y, Zhang D W, and Tian Y L. An improved adaptive genetic algorithm for image segmentation and vision alignment used in microelectronic bonding, IEEE/ASME Transactions on Mechatronics, 2014, 19(3): 916-923.
[12] Zhang H J*, Wang F J, Gao W G, and Hou Y Y. Quality assessment for resistance spot welding based on binary image of electrode displacement signal and probabilistic neural network, Science and Technology of Welding and Joining, 2014, 19(3): 242-249.
[13] Han L*, Zhang D W, Tian Y L, Wang F J, and Xiao H. Static stiffness modeling and sensitivity analysis for geared system used for rotary feeding, PIMechE, Part C, Journal of Mechanical Engineering Science, 2014, 228(8): 1431-1443.
[14] Tian Y L*, Li Z, Gao W G, Cai K H, Wang F J, Zhang D W, Shirinzadeh B, and Fatikow S. Mechanical properties investigation of monolayer h-BN sheet under in-plane shear displacement using molecular dynamics, Journal of Applied Physics, 2014, 115(1): 1-9.
[15] Zhang H J, Wang F J*, Zhao X Y, Zhang D W, and Tian Y L. Electrical matching of low power piezoelectric ultrasonic transducers for microelectronic bonding, Sensors and Actuators A: Physical, 2013, A199: 241-249.
[16] Han L*, Zhang D W, and Wang F J. Predicting film parameter and friction coefficient for helical gears considering surface roughness and load variation, Tribology Transactions, 2013, 56(1): 49-57.
[17] Li X C, Tian Y L*, Qin Y D, Wang F J, Gao W G, Zhang D W, and Fatikow S. Design, identification and control of a 2-DOF flexure-based mechanism for micro/nano manipulation, Nanoscience and Nanotechnology Letters, 2013. 5(9): 960-967.
[18] Han L, Niu W T*, Zhang D W, and Wang F J. An improved algorithm for calculating friction force and torque in involute helical gears, Mathematical Problems in Engineering, 2013, 1: 1-13.
[19] Tian Y L, Cai K H, Gao W G*, Wang F J, Zhang D W, Shirinzadeh B, Fatikow S. Transverse vibration analyses of cantilevered boron nitride nanocones, Micro & Nano Letters, 2013, 8(12): 899-902.
[20] Wang F J*, Zhao X Y, Zhang D W, Ma Z P, and Jing X B. Robust and precision control for a directly driven XY table, Proc. IMechE, Part C, Journal of Mechanical Engineering Science, 2011, 225(5): 1107-1120.
[21] Wang F J*, Zhao X Y, Zhang D W, Wu Y M, Shirinzadeh B, and Tian Y L. Design and control of a high-acceleration precision positioning system with a novel flexible decoupling mechanism, Proc. IMechE, Part C, Journal of Mechanical Engineering Science, 2010, 224(2): 431-442.
[22] Wang F J*, Zhao X Y, Zhang D W, and Wu Y M. Design and control of a directly-driven bond head for thermosonic bonding, Proc. IMechE, Part C, Journal of Mechanical Engineering Science, 2010, 224(4): 805-815.
[23] Wang F J*, Zhao X Y, Zhang D W, and Wu Y M. Development of novel ultrasonic transducers for microelectronics packaging, Journal of Materials Processing Technology, 2009, 209(3): 1291-1301.
[24] Wang F J*, Mao H D, Zhang D W, and Zhao X Y. The crack control during laser cladding by adding the stainless steel net in the coating, Applied Surface Science, 2009, 255(21): 8846-8854.
[25] Wang F J*, Mao H D, Zhang D W, Zhao X Y, and Shen Y. Online study of cracks during laser cladding process based on acoustic emission technique and finite element analysis, Applied Surface Science, 2008, 255(5): 3267-3275.

院長信箱 | 黨委書記信箱 | 相關鏈接 | 聯系我們 | 法律聲明
? 2018-2019 機械工程學院 版權所有 [技術支持]天津市天深科技股份有限公司